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Effects of uniform injection at the wall on the stability of Couette-like flows
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A linear stability analysis of a family of nearly parallel wall-bounded flows with injection at the lower wall
and suction at the upper one is presented. The mean pressure gradient is such that the streamwise velocity
profile remains linear in spite of injection. An asymptotic analysis shows that, for weak injection, the expan-
sion rate of linear perturbations is a linear function of the injection Reynolds nuiipésed on the width of the
domain and the injection velocityThis point is confirmed by a numerical solver that also shows that, due to
the injection process, the eigenmodes are drastically reorganized in the complex plane. In particular, the
eigenvalue distribution is no longer symmetric. Moreover, the imaginary part of the phase velocity tends to
increase so that some modes may become linearly unstable. However, the base flow remains stable as long as
the injection Reynolds number is lower than a critical value close to 48. It is also found that higher injection
rates (injection Reynolds numbers greater than) &fabilize the flow, as already observed for channel or
rotating flows.[S1063-651X97)09309-4

PACS numbsdis): 47.20—k

I. INTRODUCTION sponding to achannelwith injection at both sidesFor low
values ofRjyj ch, @ reduction in the critical value d®,, chis
Wall-injected flows are of great interest in research asobserved, indicating that lower injection rates destabilize the
well as in industry and many experimental devices involveflow. For higher values oRj,; ¢, the stability of the flow
injection through a porous wall. They are also useful toappreciably increases.
mimic the effects of a transverse velocity component on a Other authors such as Chang and Sarfatlyas well as
channel flow. For example, the combustion of a solid propeliMin and Lueptow[8] have performed the linear stability
lant inside a rocket motor creates a strong transverse companalysis of the flow induced between two rotating permeable
nent and the effects of this flux on the stability, the turbu-concentric cylinders when radial flow is present. It is shown
lence statistics, and the turbulence structure of the flow aren [8] that the Taylor number at which Taylor vortices appear
not fully understood 1]. It is, however, show2] that the  decreases for small radial components. If the radial Reynolds
global stability of such a device is strongly related to thenumber increases, the base flow becomes more stable be-
hydrodynamic stability of some sensible regions inside thecause the outward flow overwhelms the centrifugal instabil-
combustion chamber. The present analysis is devoted to ttig. In all cases, the Taylor vortices are shown to be shifted
understanding of the effect of injection on the linear stabilitytoward the outer cylinder by the radially outward flow.
of an elementary flow. In our analysis we consider a steady, fully develofied
Changes in the turbulent fluxes for a flow submitted tothe streamwise directigrlow of an incompressible fluid be-
slight wall injection are often accounted for by modifying the tween two infinite porous plane walls, with uniform injection
wall damping functior{3]. Recently, direct numerical simu- at the lower wall and opposite suction at the upper one. The
lations of turbulent shear flows with wall injection show that lower wall is fixed, while the upper one moves along its own
turbulence statistics, as well as most of classical budgets, afgane at a constant speed, and the streamwise pressure gra-
modified near a porous wal4,5]. The turbulence structure dient is supposed to be constant. One of the most remarkable
has also been shown [d] to be drastically modified in the features of this flow is that, for large injection and suitable
case of a large injection rat@njection velocity of the order pressure gradient, it displays a steady boundary layer that is
of the wall shear velocity atypical in that its thickness is proportional to viscodi®.
A linear stability analysis of an injection-induced flow in We focus on the case where the pressure gradient is fixed in
a planar porous-walled channel has been performed by Varauch a way that the streamwise velocity profile is linear and
paev and Yagodkif6]. The neutral stability curve that they the boundary layer vanishes. Very little is known about the
obtained shows that the criticakial-flow Reynolds number stability of this flow. Following[10], we will investigate its
(i.e., the axial-flow Reynolds numbg, .,at which unstable linear stability by means of a normal-mode approach ex-
modes may appepis a linearly increasing function of the tended to nonparallel flows. This approach will enable us to
injection Reynolds numbemR;, ., for Ri;cn greater than generalize the analytical solution pf1] to the case of the
about 300.(The subscript “ch” denotes parameters corre-wall-injected Couette flow.
This base flow, as well as the relevance of the normal
modes approach, will be discussed precisely in the next sec-
*Present address: Department of Applied Mathematics and Thedion. The corresponding eigenvalue problem will be posed in
retical Physics, Silver Street, University of Cambridge, CB3 9EWSec. Il and partially solved in an analytical manner in Sec.
Cambridge, United Kingdom. IV under the assumption of low injection Reynolds number.
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FIG. 2. Typical mean longitudinal velocity profiles fdR;
=85 and different values of the pressure paramHtdXote that the
inviscid solution is valid in almost the whole domain for this injec-
tion Reynolds number.

FIG. 1. Geometric configuration for the linear stability analysis.
Since the flow is fully developed in the direction, only the mean
pressure varies along®, with a constantnegative gradient.

The constants of the asymptotic models obtained are fixed U(y)=I1 Ry y+ HRo) 1—expRiyy
using the numerical solver described in Sec. V. Finally, nu- Rinj Rinj | 1—expRiy
merical results corresponding to higher injection rates are
discussed in Sec. VI. The first term on the right-hand side of E§) may be writ-
ten asUinyiscia=11(Uo/Vi;)y. The solution of the inviscid
Il. MEAN FLOW problem withV=V;, at y=0 andV=V;;; aty=1 is U
= Uinviscid-

Clearly, an important value ofl is Il¢=Riy/R,. For
[T=1I¢, the viscous solution3) reduces tdJ = Ujyiscig and
finally to U=y. If 0<II<Il,, the mean velocity induced
by the favorable pressure gradient is small and a boundary
layer develops neay=1. If II>1lg, the pressure gradient
effects are so important that reaches a maximum greater

1—

()

Because the flow is fully developed in thé& direction
(all dimensional variables, exceptandU,, are noted with
an asterisk superscripand the fluid is incompressible, the
mean velocity in they* directionV* is constant and equals
the injection or suction velocity/i’r‘]j. Furthermore, the di-
mensional mean streamwise veloclty* depends only on

the normal coordinatg* and the mean pressuRé is con-  than ynity fory<1. A transition layer then allows to reach
stant in they* direction. The gradient oP* in the stream- ity wheny=1. Various solutions are shown in Fig. 2 for
wise directiondP*/dx* is a fixed parameter of the flow. itferent values ofl (/M e=2, 1.2, 1, 0.8, and 0)gand for
Since the lower wall §*=0) is fixed and the upper one R —g5 The inviscid solution is also plotted fofl
(y* =h) moves in its own plane at the constant streamwise_ 6_5[[6 )
speedU,, the no-slip condition imposed* =0 for y*=0 _ As already noted, ifl=11o=Ry,/R,, the mean longitu-
andU* =U, for y*=h. The flow geometry and the coordi- gina| velocity remains linear and we obtain simply=y.
nate system are both described in Fig. 1. Thus the flow described by E¢B) with IT=11,is a gener-
Then, usingh (the distance between the two walnd  3jized Couette flowwith injection and pressure gradient
U, to nondimensionalize the&*-momentum equation, We (The name “Couette”is used here to refer to the classic form
may obtain U=y that is obtained.Note that for a given outer Reynolds
numberR,, whenR;; tends to zeroll., also tends to zero
1) and Eq.(3) corresponds to the classic parallel Couette flow
without pressure gradient. In this paper, we carry out a linear
stability analysis of the generalized Couette flgw=y, V
wherell is the nondimensional pressure gradient, defined as-Vj,;, andIl=R;,;/R,). Note that this flow may be seen as
M= —(h/pU32)(dP*/dx*). The Reynolds number®, and the limit of the flow studied by Min and Lueptof8] when
Rin are based otJ, andVi’Ej, respectively, and both oh. both the inner and outer radii of their cylindrical configura-
Classic no-slip boundary conditions are associated with Edfion tend to infinity and only the outer cylinder rotates about
(2): its axis. This latter case is equivalent to ours except that we
consider a pressure gradient along the flow direction while
Uu(0)=0, U(1)=1. (2)  these authors do not.
It is worth noting that the present flow is also strongly
The analytical solution of Eq1) with Eg. (2) may then be linked to the one studied by Varapaev and Yagodiéh
written as Indeed if H denotes the height of their channel with injec-

Rip dU 1 d?U
— =0+ ——,
R, dy R, dy?
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FIG. 3. Comparison of the generalized Couette fltower fig-
ure) and the channel with injection at both sidepper figurg¢. The
former may be seen as a part of the latter.

tion at both sidegsee Fig. 3 it is easy to show that the
corresponding mean flow is such that

s Ut cod TX) ith U =
sp=U3,co > hH with UZ,=

*
71'Vinj,ch

2H

X*, (4

e e o TY*
Ven=VinjerSin 5 17/ 5
dPg, _ ( WVf:qj,ch> Zx* ©)
dx* ~ Pl 2H '

In these relation®%,, V&, anddP}/dX* denote the stream-
wise velocity, the normalto the wal) velocity, and the
streamwise pressure gradient, respectivilf.is the stream-
wise mean velocity at the center line of the channgf (
=0). X* is the coordinate along the flow directigi* =0
at the front end of the channeNote that Eqs(4)—(6) are

good approximations of the mean flow studied by Varapae
and Yagodkin 6] as long as the channel injection Reynolds

number Rinj,ch:V;;wj,chH/V) is large enough to allow the vis-

cous terms to be neglected compared to the pressure effects.
If this is not the case, the corresponding mean flow may still
be derived analytically provided the front-end wall is re-

placed by a symmetry plarj@2]. However, the correspond-
ing velocity profile is not of cosine type anymdiecontinu-
ously passes from cosine to parabolic shapggs, tends to
zero.

Inside a small domai® defined by—H<Y*<-H+§
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:h_U;x 2H y*v (7)
:h: i’;j,ch, ®)
dP% Uy i
ch ch(y* =) ¥ inj,ch
dx* =P 5 ©)

In these relationsy* = Y* +H andy* =0 at the lower injec-
tion wall. If they are nondimensionalized using and
U:h(y*:ﬁ), relations(8) and(9) define a flow that is equiva-
lent to the base flow studied in the present pafpery, V
=Vinjch» and IT=Riy /R, cn). Here R, ¢ is an “outer”
Reynolds number defined &3 .= U:h(y* _s) 6lv. Thus,for

high injection Reynolds numbers;,R,, the generalized
Couette flow corresponds to the near wall zone of Varapaev
and Yagodkin’s flow, that is to say, the linear part of their
sine and cosine profiles for the normal and the streamwise
velocity components. Recall that this is only the case when
Rinj.ch iS large enouglisay, Riy; cn>100). Note also that the
reference velocityJ :h(y*:(S) used to nondimensionalize rela-
tions (8) and (9) actually depend on the streamwise coordi-
nate. As a consequence, the flow inside the dorBagan be
seen as a generalized Couette flow only if its length is small

compared to its positioX} in the channel dX* <X}).
lll. EIGENVALUE PROBLEM

An important feature to note is that the generalized Cou-
ette flow(as defined in the preceding sectios nonparallel
since it has a nonzero transverse component. As a conse-
guence, the classical Orr-Sommerfeld equation for either par-
allel or nearly parallel flowq13] is not relevant for the
present study. However, since the mean flow is periodic in
the streamwise direction, the classic normal-mode approach
[10] can be used to derive the relevant equation for the per-
turbations. The flow is defined with its stream function
¥(X,y), separated into a mean and a fluctuating part

P(XY)=h(Xy) + (XY, 1), (10
In the context ofinear stability analysis, the perturbation is
supposed to be small so that the quadratic terms of fluctuat-
ing quantities are negligible compared to first-order terms.
Jhe starting point is the vorticity equation for two-
dimensional incompressible flows

1
Aat Py (A)x— Ay =5 A(AY), (11)

whereR=U L /v is the Reynolds number based on a ref-
erence velocityJ,, length scale,¢;, and the viscosity.

(In the present study, we have chosEn=U, and L s
=h, so thatR equalsR,.) The stream function has thus been
nondimensionalized withJ L ;. Using the normal-mode

and X* <X*<X*+dX* with 6<H (see the exaggerated approach we write the perturbations in the form
area of Fig. 3 the above mean quantities may be approxi-

mated as

P(x,y,) = d(y)exdia(x—ct)], (12
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where« is real and denotes the spatial wave number of the 1

perturbation;c is the complex phase velocitg=c,+ic;, J exp( = ay)f(y)dy=0. (19

. 2_ _ . . . - - 0

i=—1). This approach is valid for short times only since

viscous and transverse effects rapidly change the shape ¢f,o only difference between Davey’s problem and ours is

the perturbation amplitude. _ theR;,f’ term in Eq.(18). We look for solutions of Eq(18)
Substituting Eq(10) into Eq.(11), we obtain of the formf(y) = f cexd M (y—O)tlg(t)dt. This leads to
[
U(¢"~a?$) =AU G+ —=— ($9—a¢") f(y)= f exA(y—ojt+at’~t¥/3]dt, (20
0 C
_ ?; [V(¢"—a2¢’)—AVe'] wherea=R;,;/(2\) and C is the classic complex contour

used for the first Airy function C={x exp(2=/3),
« exp(—i27/3)}. Note that fora=0, Eq. (18) is the Airy
(¢"—a’p). (13) gquation and f[he solutior} is jus(y)=Ai[)\(y_— c)]. Writ-
ing Eq. (19) with expression(20) and assuming.>«a, we

This is the well-known Orr-Sommerfeld equation in which obtain

an additional term due to the transverse mean flow appears. exp(At)—1
The mean flow is defined as f -t
c

i
ct—
Ro

exp(bt+at?—t3/3)dt=0. (21)

UGY) =y, V(X,Y)=— . (14)

As already noted, if the mean flow is fully developed in the
x direction, the mean normal velocity is constant because of 1
continuity. If y varies in the &,b) interval (a=0 andb=1 F(a,b)=f — exp(bt+at?—t%/3)dt=0. (22)
in our study, we set the boundary conditions ct

whereb=—\c. Following Davey, we assumg|>1 and
write this equation to leading order in the form

b(a)=¢'(a)=d(b)=¢'(b)=0, (15) We shqll discuss the reliability of this ap'proximation _Iater by
examining thex dependence of the obtained dispersion rela-

which correspond to zero fluctuating velocities at the boundtions. The stability of the flow depends asymptotically on
aries. Equatiori13) with boundary condition§l5) defines an ~ two complex parameters(b), i.e., on three real parameters
eigenvalue problem: We have to find combinations ofRin/(aRo)"® c;, andc;. Fora=0 the boundary condition
(a,c,R,) for which nontrivial solutions exist. We choose to (22) is justA;(b,1)=0 (A, denotes the first generalized Airy
Study thetempora”nstab”ity of the ﬂOW, so that we set fUnCtiOﬂ), which shows thab is constant, and leads to Dav-
andR, first and then solve Eq13) to obtain the solutions €Y'S dispersion relations. For nonzero injections the roots of
[#(y)] and the corresponding complex phase velocity. the F(a,b) function are not known, but &s is continuously
The expansion rate of the perturbation is ther ac; . Itis  differentiable with respect tb, the implicit function theo-
positive if the flow is unstable for the wave numberand ~ rem leads to
the Reynolds numbdR, and negative if the flow is stable for ~
these parameters. b=F(a), (23

whereF is a continuously differentiable function defined in

an open neighborhood @, which we denoté{. The third
An asymptotic analysis based on the fact that injection istsymptotic hypothesis we use is thRy<(aR,)** (i.e.,a is

small compared to the streamwise velocity has been peglose to 0, in such a way that @ 4. Asi/ is not empty(F is

IV. ASYMPTOTIC ANALYSIS

formed. Using Davey’s methodolody 1], we set not singulay, this hypothesis is verified & is small enough.
, 5 The F function can thus be approximated by its first-order
f(y)=¢"(y)—a“d(y), (16 Taylor series
so that the stream function that satisfig{1)=¢(1)=0 is F(a)=F(0)+aF’(0). (24)

We then obtairb=k;+k,a, wherek; andk, are complex
constants. This leads to the dispersion relations

-1 1
¢(y)=7 fy sinf a(y—s)]f(s)ds. (17

Equation(13) then reads o Ao Rinj
G=—o 7T AL 23’ (25
”_y3 PSY ’ R0 (aRO) (aRo)
f’=\ (y_C)f+Rinjf s (18)
with A3=iaR,, the argument of\ is /6, and c=c c, Ao , R 26)

~ —+ ,
+ialR,. Solutions of Eq.(18) must satisfy boundary con- (aRy)¥ "t (aR,)?3
ditions at the wall: ¢'(0)=¢(0)=0. We substitute these

conditions into expressiofL7) to obtain a<(aRy)¥, (27)
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HereA,, A;, A(’,, andAi denote real constants. To estimate FI_G. 5. _Compari_son between numerical resu_lts and the analyti-
these constants, we made use of the numerical solver d&‘?" _d|sper5|on relations corresponding to the linear and the qua-
scribed in Sec. V. We findho=—1.1, in agreement with dratic _models, foraRf/s=30 000 and 75_000. The asymptotlc_as-

, . i " . sumption R, <(aR,)™" prevents the linear model from being
Davey's numerical fitting. Moreover, a positive value is reliable forR! ~130
found for A; (A;=0.5), showing that the injection term has " '
a destabilizing effectat least for smalR;y; .

In order to test the reliability of the model we have exam-
ined the fitted constants, andA;, which are not expected
to vary with . Figure 4 showsA, and A; versus|\| for _ _ _ 1
IN| €[10,46], obtained withR, e[10%,10], «=0.1, anda F(a)=F(0)+aF'(0)+ - a*F"(0),
=1. For\ <20, the variation rate oA, is no longer negli- 2!
gible because the asymptotic hypothesis that simplifies Eqa
(21) to Eq.(22) is no longer valid. Taking averaged values of

formula may be applied at higher order. For example, using
a second-order approximation fbr,

quadratic dispersion relation is obtained:

A, andA, for |\| €[30,45 (i.e., aR, e [27 000,90 00P), a W 11482 R R2
numerical dispersion relation fax is directly obtained from Ci=——— '_1/3+0_5365L2/3_0_0320ﬂ,
Eq. (25), R, (aRo) (aRo) aR,
(34)
a  1.1482 Rinj "
Ci=— —— ——»+0.5365——;, 30 <(aRy)™, 35
TR (arg MRy 0 aslaR) %9
1<(aRy)™?, 36
a<(aRy)™, (31) (aR;) (36)
Rin<(aRy)">. 3
aR,=27 000, (32) < (aRo) 37

As shown in Fig. 5, the analytical steming from the latter
Rin<(aRy)™. (33 model remains much closer to the numerical one. Anyway,
as noticed for the first-order asymptotic formula, variation of
The third asymptotic assumption concerns the injectiony; with |A| discards those results if we move to anothér
Reynolds numbeR;<(aR,)"?. To estimate the values of especially if|\|<25.
Rinj for which this hypothesis is valid we have plotteg The main advantage of this asymptotic analysis is to show
versusR;; and compared numerical and analytical resultsthat, for small injection rates, the phase velocity of the most
(30). Figure 5 suggests that the model remains reliable founstable mode is a linear function of the injection Reynolds
Riji~30 and less, even if the asymptotic hypotheBig  number. However, this approach needed to be coupled with a
<(aR,)*is no longer valid, strictly speaking. numerical one in order to show that injection has a destabi-
Higher-order_asymptotic models_are easily provided bylizing effect. Moreover, the obtained dispersion relations are
the relationb=F(a). Indeed, since~ is regular, Taylor's valid only in an open neighborhood @=0 because the
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implicit function theorem has been used. Consequently, it is d(b)=0= =0,
worth continuing this study using the numerical tool already
used to fit the constants, andA; . This tool is described in &' (D)=0=0(by_1,bn_2:Pn_5:bn_2)=0. (45)

the next section.

Equations (44) and (45 provide a way to calculate
V. NUMERICAL METHOD (b1,02,dn-1,0N), SO that we restrict the dimension of the

In an attempt to investigate further the stability analysis ofSi9€nvalues problert#0)
the so-called generalized Couette flow, a numerical solver -
for the Orr-Sommerfeld equation has been developed. In or- ¢=(db3, ... Pn-2) -
der to use the same solver for any mean flow, a finite-
difference method has been chosen. It is slower than meth.n€nA andB denote N—4) X (N—4) banded nonsymmet-
ods based on expansion in orthogonal functid, but can ric matrices where the firstand last tv_vo lines have been_ _
be easily applied to two-dimensional flows and does not def€moved and lines near the boundaries have been modified
pend on the mean profile we use. We suppose the flow j&ccording to Eqsi44) and(45). Equation(40) defines a gen-
fully developed in thex direction, so that Eq(13) only con- eralized eigenvalue problem, which we have solved with the

tains functions of they variable. This implies that thg ~ LAPACK library.

component of the mean flow is uniform. Tlyeaxis is dis- The numerical procedure. has been tested extensively for
cretized withN grid points: fundamental parallel flowgmixing layer, Couette flow, and
Poiseuille flow and quasiparallel flowssymmetric or asym-
b—a metric jets and channel flow with injectiprThe results ob-
yi=a+(i-1) g7, i=L...N. (38 tained for the configuration studied in this pagsee Sec. )l

are presented in the next section.
The amplitude of the fluctuating stream function is sampled

[#i=d(y;)] and its derivativespM=({"V, ... ,6\")T are VI. NUMERICAL RESULTS

given by a compact schenji#5] . _
The numerical procedure described above has been used

A,dM=B,¢. (390  to study the influence of injection on the stability of the
generalized Couette flow. In most computations, @8) has
A, is the NXN tridiagonal matrix of the compact scheme peen discretized using 100 points in thelirection.
andB,, is anNxX N banded matrix whose bandwidth depends

on the stencil of the finite-difference method we chotsae A. Eigenmodes

Ref. [15]).
Equation(13) discretized with this method leads to The influence of injection on the eigenmodes has been
investigated. Its effect is clearly visible as mode locations
A¢p=\Bg, (400 drastically change in thecf,c;) plane (this graph is often
with called thespectrumof the corresponding matrix by linear

algebra specialists; this nhame, which may also be found in

A=Di AZ1B.— o21)—Di " [13], WI!| be_ used bel_ov)z. Typ|c§1I mode distributions are
lag(U)(A; "B~ al) ~Diag(U") plotted in Fig. 6. In this figure, filled and open symbols, as
well as dots, denote eigenvalues. The injection Reynolds

i i
to= (A;'Bs—a®A;'By) — - Diag(V) number lies in the range 0—200, an@,( ) is fixed (these
© values have been chosen according to an analysis of this flow
X (A3 'B3—a?A;'By), (41)  performed in the turbulent case by Nicoatlal. [16]): R,
=3000 anda=1. The filled circles denote the modes for
B=A2_182— a?l, (42 zero injection Reynolds numbers, whereas the open symbols
correspond to non-zero injection ratéR;,;=50 (circles,
ia Rinj=100 (squarey R;,;=150 (diamond$, and Rj,j=200
A=c+ R,’ (43) (triangles, respectivel). The path of a given mode, when
injection increases, is given by dots in thg (c;) plane. For
where Diagf) is a diagonal matrix defined as each path, the difference iR;; between two consecutive
] . dots is 1. Only the upper part,t>—0.5) of the spectra is
[Diag(f)]i ;=6 f(y), i=1,...N. shown in Fig. 6 because it contains the most interesting

Boundary conditions are imposed in an explicit manner, us[nodes(the modes likely to become unstabl€or zero in-

ing a fourth-order finite-difference formula fap’. On the Jection (f'"e.d circles), weII-known results _fo_r pgrallel Cou-
ette flow without pressure gradient and injection are found.
lower boundary &) we have

Since this flow is stable, all the modes are situated in the half

H(a)=0=¢,=0, plane corresponding to,<<0. Note also that real partg,)
of the modes lie in the intervaldi,in ,Umad=(0,1), in agree-
¢'(2)=0=0( by, b3, b4, b5)=0, (44)  ment with Joseph’s theorefd7]. Finally, the mode reparti-

tion is symmetric with respect to the line,= (U yax
while for the upper boundarybj +Unin)/2=3. It has been checked that the eigenveciprs
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FIG. 6. Less stable eigenmodes f§6:3000’ a=1, and Ci FIG. 7. Mean-kinetic-energy profiles for modﬂ)( Circles de-
>0.5, with 0<R;;;<200. The change iR, between two consecu- Note unstable modes. For edglfy, q has been scaled by its maxi-
tive dots is 1. For no injection, the spectrum is symmetric gnd Mal value. Note that the secondary peak approaches the upper wall

lies in the rangeJ ni,—Umax, in agreement with Joseph's theorem. When injection increases.
Injection makes modes spread out in the complex plane. VRjen . . -
increases from 0, modea] becomes unstable and then stabilizes_(a_) f(_)r the cIaSSI_c_ Cquette flovis never destabilized by
for Ry;>170. injection. Its amplification rate decreases even for small val-

' ues of Ry, while that of mode &) begins to grow. The

_ ) o following subsection is devoted to the comparison of the

c” (¢=c, ¢;=1—c;) are such thatp*(y)=¢ (1
-y). B. Eigenvectors

When injection occurs, the modes are spread out across _. o !
Figures 7 and 8 show the mean-kinetic-energy profile

the spectrum, which is no longer symmetric. This is intu- > i
itively understable since, due to transverse convection, th8(y) for the perturbations corresponding to modes &nd
base flow is not symmetric with respect to the lipe 0.5. (b) respectively. This quantity has been calculated by aver-

We can also note from Fig. 6 that the real part of the phasgging the kinetic energy of the perturbations over a period:

velocity may lie outside the rang¥ pin—Umax for Riy of 1 o (27a
order 50 or greatefsee modesk), (d), and €), for ex- q=z =—
amplg. This in not in disagreement with Joseph’s theorem 22m Jo
[17] since it has been derived for parallel flows only. The 10 .

evolution of a given mode may be highly irregular when '

injection increases. For example, mod® follows a path
whose direction changes rapidly three times betwBgp 08 |
=0 andR;,=30. Moreover, the distance between two con-
secutive dotgon a given pathmay vary in a large extent
[see moded) in Fig. 6]. This means that the phase velocity 06 |
of the corresponding mode is not a linear function of the
injection Reynolds number. However, for Idwy,, the evo-
lution of the phase velocity of each mode is regular in the © g4
(c;,c¢i) plane. This result is in agreement with the linear

(with respect tdR;;) dispersion relation&25)—(29), resulting

from the asymptotic model derived in Sec. IV. Moda) ( 0.2
which was one of the two most unstable modes of the flow
without injection, becomes unstable immediately afy;

=50. WhenRy, increases further, the amplification rate of 0.00

(u?+v?)dx. (46)

9/ G

this mode increases too, up da@;=0.02 forR;,=100. Then y
injection begins to stabilize this mode and finally the base
flow becomes stable again f&%,;=170. Recall that this fea- FIG. 8. Mean-kinetic-energy profiles for mod®)( For each

ture (destabilization for low injection, stabilization for high Ry, d has been scaled by its maximal value. Note that the shift
injection rate$ has already been observed by Varapaev angowards the upper boundary is limited due to the no-slip condition
Yagodkin [6] and Min and Lueptow{8] for other mean imposed aty=1. The exaggerated area shows that a discretization
flows. This result will be obtained for otherandR, in Sec.  using 100 points is sufficient to compute the corresponding eigen-

VI C. Finally, note that modek) [the symmetric mode of vector.
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In definition (46), u andv are the real parts of the velocity 1.0 . ‘ ‘ :
fluctuations in thex andy directions, respectively, Primary ——> R, =100 /
peaks oo R = 120 4 ,’I//
i e--o R, =140 i
u=Re ' (y)e'], (47) o8l \\ — IR 160 il
, . —-— Ry =180 (|
v=Rd —iag(y)e']. (48) fi
. 06 | /9’ '9\\ Secondary peaks [ 4./
g(y) is thus calculated from 5 Jrog) ol
=2 & \\ !¢
~ Il ,g-—o\\Q )!//':
Lo 2n 22 Z 04 RN ol
q=7 (1¢'1*+ e ¢?). (49 [Lrrm T A
f/’ ,/' » 5;7/
1/
In each graph, the wave numberand the outer Reynolds 0.2 r ,,;// §\\\§\_ ’
numberR, are fixed(R,= 3000 anda= 1), while the injec- ' =
tion Reynolds number varies from 0 to 80; for edf, q ’
has been scaled by its maximal value. In Fig. 7, we have %97 02 04 0.6 08 10
marked with a circle the profiles that havepasitiveexpan- y

sion rate(i.e., which areunstable.

Mode (a) is such that most of the energy is contained in  FIG. 9. Mean-kinetic-energy profiles for moda)( Circles de-
the lower half of the domain (@y<%) when no injection hote unstable modes. For eaRpy;, q has been scaled by its maxi-
occurs(see Fig. 7. The q profile is characterized by two mal value. The right peak cannot evolve because of the no-slip
peaks(the first one located at,;~0.15, the second one at condition imposed ay=1 and the left peak decreasesRig in-
Ya2=0.4). Due to injection, the secondary maximum gf C'®ases.

develops. It is shifted towards the upper boundary much
faster than the primary peaky,, passes from 0.4 to 0.9 Wall. Itwould seem that the transverse flow was overwhelm-

when Ry, increases from 0 to 80; at the same tinyg, ing the hydrodynamic instability. The same scenario is pro-

roughly passes from 0.15 to 0.20. Moreover, the value of th&0Sed in[8] to explain the restabilization that occurs when

secondary peak is a quarter of the value of the primary peaﬂ‘e outward flow increases. Other computations with differ-

for Ry;=0; this ratio is greater than 0.8 f,,=80. ent types of upper _WaII _boundary conditions will be neces-
Most of the kinetic energy of modeb] is contained be- S&ry to conclude this point.

tweeny=3 and 1. Because eigenvectora)(and () are

symmetric abouy= 1 when Rinj=0, the positions of the two C. Marginal stability of the generalized Couette flow

main energy peaks of moded) are y,=0.85 andyz, The previous description of mode evolution in the (C;)

=(0.6 (see Fig. 8 When injection occurs, the primary peak L . . f .

. . . plane suggests that it is possible to reach linear instability
is shifted towards the upper wall, but cannot reach this be: " L . e
cause of the no-slip congi%on at=1. The secondary peak is provided the injection Reynolds number is sufficiently large.

. ) ; This is confirmed for a wide range of outer Reynolds num-
shifted too, but cannot develdps it does in thed) mode .bers and wave numbers in Fig. 10, which shows the maximal

casq because of the existence of the primary peak. Its pos'éxpansion rate of a linear perturbationy={maxac,

tion does not change to a large extent and its contribution to .
the total kinetic energy of the mode decreases. The exagge'rg—[o’l]}) VersusRy for variousR, . (For all the computed
ated part of this figure shows that the corresponding eigen-
vector is well resolved if 100 points are used to discretize
Eqg. (13). Indeed, no change is observed in the shape of the
primary peakexpected to be the most difficult part to assess 0002 |
numerically for this mode if 200 or 400 points are used
instead.

For Rj,>100, mode &) is such that the amount of energy 0.000
contained in the rangé<y<1 is equivalent to that con-
tained in the rangg <y<1. The value of the right peak
(referred to above as the secondary pesakiow greater than -0.002
that of the primary peak. It may be noted in Fig. 9 that mode
(a) now follows a similar evolution to that of modd) for
lower injection rates. The right peak cannot be displaced due
to the no-slip condition prescribed gt=1. Moreover, the
left peak is weakly displaced and decreases as injection in-

0.004

R = 100000 Ro increases

-0.004 | R, = 10000

3 -0.006 . .
creases. This mode becomes more and more stable whel 00 200 R 400 60.0
injection increases, as dose mod®).( Finally, mode &) "
becomes stable again f&,;=170. FIG. 10. Maximal expansion rate versus injection Reynolds

From the above description of the evolutiongfit seems  number. The step iR, is 10°. This figure suggests that the value of
that the stabilization that occurs for large injection rates isR,, for which the flow becomes unstable does not depend on the
strongly linked to the no-slip condition imposed at the upperstreamwise Reynolds numbgy, .
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FIG. 11. Nondimensional critical injection velocity versus

streamwise Reynolds number. For large streamwise Reynolds num-

bersR,, the nondimensional critical injection velocity is a linear

function of 1R, . This implies that the critical injection Reynolds

numberR;; it IS constanisee the tejt

FIG. 12. Critical streamwise Reynolds number versus injection
Reynolds number. As long as the injection Reynolds number is
lower than its critical value 48, the Couette flow with injection and
pressure gradient remains stable. Then injection destabilizes this
base flow, which becomes conditionally unstable Rgj>48. For
values ofRy,; greater than 80, the critical streamwise Reynolds

values of R, and R;;; we have checked that m@x;,« number increases again.

€[0,1]} =maXac; ,a€[0,0]}.) Positive y means that there
exist a e[ 0,,0] for which the flow is unstable. As expected, o
for Ryy=0 the linear perturbation is damped for alland for small valugs oRR,, the critical injection Reynolds num-
R,, in agreement with classical results on the stability of the?®r ténds to increase. Consequently, 48 may be seen as a
Couette flow without injection and pressure gradient. Withcritical value forR;y, under which the generalized Couette
increasingR,;, y increases and becomes positive, so that thdlow is always stable.
flow is linearly unstable. Moreover, a critical value Bf;; The existence of a critical injection Reynolds number may
seems to exist, before which the flow remains linearly stabl@e interpreted by recalling that one can view the wall-
forall R,. For higherR;;, the flow becomes unstable: Wave injected flow as a mean flow with two components,Y)
numbers exist for which the perturbation grows, provid and linearly perturb it to find its stability characteristics. This
is large enough. Figure 10 suggests that the valug,pfor  is the methodology used in this paper. Another approach
which the flow becomes unstabd®es not depend on,Rat  would consist of viewing the Couette flow with injection and
least for 16< Rinj< 10°). The existence of a critical injection pressure gradient as a parallel Couette flow submitted to a
Reynolds numbeR;y,; i that does not depend on the stream-perturbation(the injection and the associated pressure gradi-
wise Reynolds numbeR, leads to the fact that the nondi- enf). Since this latter flow is known to be stable for small
mensionalized injection velocity for which the flow becomesdisturbances, infinitesimal injection is expected to let the
unstable Viicir) is an inverse function of the streamwise flow stable: Only injections with a sufficient momentum flux
Reynolds number may lead to instability. As both approaches must be equiva-
VE o C lent, we conclude that the critical streamwise Reynolds num-
Vini Cm:m — (50)  ber(in the sense of the first approaahould remain infinite

' Uo R for all injection Reynolds number lower than a certain value.

This is the main result of our numerical linear stability analy-

with C positive: constant. Flgqre 11 shows the marglnalsis: We find an injection Reynolds number of order 48, under
curve obtained by the numerical Orr-Sommerfeld solver

plotted in the ¥ 1R,) plane and sugges§=~48, at which no instability occurs whatever the streamwise Rey-
inj,crits 0 - ’

. nolds number.
<0. . * . =R.. . . i
Lisség?armmo 0.0003. Then, Sinc¥ i/ Uo= Rijcrit/Ro. The critical streamwise Reynolds number has also been

computed and is plotted vers&, in Fig. 12. This curve
Rinj crit= C=48. (52) suggests thatR,) i remains infinite as long aR;,;<48, in
agreement with Fig. 11. Fd®;,;>48, the critical streamwise
This value also corresponds to the intersection point of th&keynolds number drastically decreases to finite values. Its
curves y versus Ry, which are plotted in Fig. 10. For minimum value is around 1450 and is achieved for an injec-
1/R,>0.0003, the slope of the curve plotted in Fig. 11 be-tion Reynolds number of order 80. For largey; the mar-
comes greater and greater. In this range of streamwise Reginal streamwise Reynolds number increases. The same be-
nolds number, a cubic fitting provides a better approximatiorhavior has been found by Varapaev and Yagodiéh for
of Vinj.crit @s @ function of R, (see Fig. 11 This means that their channel with injection at both sides.
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VIl. CONCLUSION Due to injection, the eigenvalues are spread out in the

The stability of plane Couette flow submitted to wall in- (r.ci) plane and the spgctrum s np_longer symmetric. In
jection through the lower wall and suction through the uppelIhe same plang, af‘d for Increasing Injection Reynollds num-
one has been examined numerically and asymptotically. Thgers', the examination of certain paths shows the e>'<|'stence of
dispersion relations proposed by Davéy] are generalized nonlinear d.ependences between the phqse velocities of the
for small injection rates. These asymptotic relations show &£orresponding modes ar}, . However, this does not seem
linear dependence of the phase velocity with the injectiod0 occur for low injection rates, in agreement with the
Reynolds number. This behavior has been confirmed using @ymptotic dispersion relations.
finite-difference numerical solver for the extended Orr- Finally, a critical injection Reynolds number exists below
Sommerfeld equation. Moreover, the different constants ofvhich no instability occurs. Our numerical solver suggests
the asymptotic model have been obtained by fitting severaR criic=48 for R,>3300. This behavior may be simply de-
numerical results. Injection is then found to have a destabiscribed in the statement that classic parallel Couette flow is a
lizing effect, as it linearly increasdfor small injection Rey- linearly stable flow, so that a finite-momentum injected flux
nolds numbersthe expansion rate of small sinusoidal per-is required to destabilize it. A nonlinear analysis of plane
turbations. Couette flow perturbed by a uniform finite injection would

High injection rates are found by numerical computationspe useful to understand the behavior of the flow near this
to stabilize the flow, as the critical streamwise Reynoldscritical injection Reynolds number.
number(which decreases for small injectionscreases for
Ri>80. Such a behavior has also been observed for channel
flows [6_] as well_as_for the Taonr-Couette_roiZB]. The ACKNOWLEDGMENTS
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