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Effects of uniform injection at the wall on the stability of Couette-like flows

F. Nicoud and J. R. Angilella*
Centre Europe´en de Recherche et de Formation Avance´e en Calcul Scientifique, 42 Avenue Gustave Coriolis,

31057 Toulouse Cedex, France
~Received 14 January 1997!

A linear stability analysis of a family of nearly parallel wall-bounded flows with injection at the lower wall
and suction at the upper one is presented. The mean pressure gradient is such that the streamwise velocity
profile remains linear in spite of injection. An asymptotic analysis shows that, for weak injection, the expan-
sion rate of linear perturbations is a linear function of the injection Reynolds number~based on the width of the
domain and the injection velocity!. This point is confirmed by a numerical solver that also shows that, due to
the injection process, the eigenmodes are drastically reorganized in the complex plane. In particular, the
eigenvalue distribution is no longer symmetric. Moreover, the imaginary part of the phase velocity tends to
increase so that some modes may become linearly unstable. However, the base flow remains stable as long as
the injection Reynolds number is lower than a critical value close to 48. It is also found that higher injection
rates ~injection Reynolds numbers greater than 80! stabilize the flow, as already observed for channel or
rotating flows.@S1063-651X~97!09309-4#

PACS number~s!: 47.20.2k
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I. INTRODUCTION

Wall-injected flows are of great interest in research
well as in industry and many experimental devices invo
injection through a porous wall. They are also useful
mimic the effects of a transverse velocity component o
channel flow. For example, the combustion of a solid prop
lant inside a rocket motor creates a strong transverse com
nent and the effects of this flux on the stability, the turb
lence statistics, and the turbulence structure of the flow
not fully understood@1#. It is, however, shown@2# that the
global stability of such a device is strongly related to t
hydrodynamic stability of some sensible regions inside
combustion chamber. The present analysis is devoted to
understanding of the effect of injection on the linear stabi
of an elementary flow.

Changes in the turbulent fluxes for a flow submitted
slight wall injection are often accounted for by modifying th
wall damping function@3#. Recently, direct numerical simu
lations of turbulent shear flows with wall injection show th
turbulence statistics, as well as most of classical budgets
modified near a porous wall@4,5#. The turbulence structure
has also been shown in@1# to be drastically modified in the
case of a large injection rate~injection velocity of the order
of the wall shear velocity!.

A linear stability analysis of an injection-induced flow
a planar porous-walled channel has been performed by V
paev and Yagodkin@6#. The neutral stability curve that the
obtained shows that the criticalaxial-flow Reynolds number
~i.e., the axial-flow Reynolds numberRax,chat which unstable
modes may appear! is a linearly increasing function of th
injection Reynolds numberRinj,ch for Rinj,ch greater than
about 300.~The subscript ‘‘ch’’ denotes parameters corr
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sponding to achannelwith injection at both sides.! For low
values ofRinj,ch, a reduction in the critical value ofRax,ch is
observed, indicating that lower injection rates destabilize
flow. For higher values ofRinj,ch, the stability of the flow
appreciably increases.

Other authors such as Chang and Sartory@7# as well as
Min and Lueptow @8# have performed the linear stabilit
analysis of the flow induced between two rotating permea
concentric cylinders when radial flow is present. It is sho
in @8# that the Taylor number at which Taylor vortices appe
decreases for small radial components. If the radial Reyno
number increases, the base flow becomes more stable
cause the outward flow overwhelms the centrifugal insta
ity. In all cases, the Taylor vortices are shown to be shif
toward the outer cylinder by the radially outward flow.

In our analysis we consider a steady, fully developed~in
the streamwise direction! flow of an incompressible fluid be
tween two infinite porous plane walls, with uniform injectio
at the lower wall and opposite suction at the upper one. T
lower wall is fixed, while the upper one moves along its ow
plane at a constant speed, and the streamwise pressure
dient is supposed to be constant. One of the most remark
features of this flow is that, for large injection and suitab
pressure gradient, it displays a steady boundary layer th
atypical in that its thickness is proportional to viscosity@9#.
We focus on the case where the pressure gradient is fixe
such a way that the streamwise velocity profile is linear a
the boundary layer vanishes. Very little is known about t
stability of this flow. Following@10#, we will investigate its
linear stability by means of a normal-mode approach
tended to nonparallel flows. This approach will enable us
generalize the analytical solution of@11# to the case of the
wall-injected Couette flow.

This base flow, as well as the relevance of the norm
modes approach, will be discussed precisely in the next
tion. The corresponding eigenvalue problem will be posed
Sec. III and partially solved in an analytical manner in S
IV under the assumption of low injection Reynolds numb

o-
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56 3001EFFECTS OF UNIFORM INJECTION AT THE WALL ON . . .
The constants of the asymptotic models obtained are fi
using the numerical solver described in Sec. V. Finally, n
merical results corresponding to higher injection rates
discussed in Sec. VI.

II. MEAN FLOW

Because the flow is fully developed in thex* direction
~all dimensional variables, excepth andUo , are noted with
an asterisk superscript! and the fluid is incompressible, th
mean velocity in they* directionV* is constant and equal
the injection or suction velocityVinj* . Furthermore, the di-
mensional mean streamwise velocityU* depends only on
the normal coordinatey* and the mean pressureP* is con-
stant in they* direction. The gradient ofP* in the stream-
wise directiondP* /dx* is a fixed parameter of the flow
Since the lower wall (y* 50) is fixed and the upper on
(y* 5h) moves in its own plane at the constant streamw
speedUo , the no-slip condition imposesU* 50 for y* 50
andU* 5Uo for y* 5h. The flow geometry and the coord
nate system are both described in Fig. 1.

Then, usingh ~the distance between the two walls! and
Uo to nondimensionalize thex* -momentum equation, we
may obtain

Rinj

Ro

dU

dy
5P1

1

Ro

d2U

dy2 , ~1!

whereP is the nondimensional pressure gradient, defined
P52(h/rUo

2)(dP* /dx* ). The Reynolds numbersRo and
Rinj are based onUo andVinj* , respectively, and both onh.
Classic no-slip boundary conditions are associated with
~1!:

U~0!50, U~1!51. ~2!

The analytical solution of Eq.~1! with Eq. ~2! may then be
written as

FIG. 1. Geometric configuration for the linear stability analys
Since the flow is fully developed in thex* direction, only the mean
pressure varies alongx* , with a constant~negative! gradient.
d
-
e

e

s

q.

U~y!5P
Ro

Rinj
y1S 12

PRo

Rinj
D 12expRinjy

12expRinj
. ~3!

The first term on the right-hand side of Eq.~3! may be writ-
ten asU inviscid5P(Uo /Vinj* )y. The solution of the inviscid
problem with V5Vinj at y50 and V5Vinj at y51 is U
5U inviscid.

Clearly, an important value ofP is Peq5Rinj /Ro . For
P5Peq the viscous solution~3! reduces toU5U inviscid and
finally to U5y. If 0,P,Peq, the mean velocity induced
by the favorable pressure gradient is small and a bound
layer develops neary51. If P.Peq the pressure gradien
effects are so important thatU reaches a maximum greate
than unity fory,1. A transition layer then allowsU to reach
unity wheny51. Various solutions are shown in Fig. 2 fo
different values ofP ~P/Peq52, 1.2, 1, 0.8, and 0.5! and for
Rinj585. The inviscid solution is also plotted forP
50.5Peq.

As already noted, ifP5Peq5Rinj /Ro , the mean longitu-
dinal velocity remains linear and we obtain simplyU5y.
Thus the flow described by Eq.~3! with P5Peq is a gener-
alized Couette flowwith injection and pressure gradient.
~The name ‘‘Couette’’is used here to refer to the classic fo
U5y that is obtained.! Note that for a given outer Reynold
numberRo , whenRinj tends to zero,Peq also tends to zero
and Eq.~3! corresponds to the classic parallel Couette fl
without pressure gradient. In this paper, we carry out a lin
stability analysis of the generalized Couette flow~U5y, V
5Vinj , andP5Rinj /Ro!. Note that this flow may be seen a
the limit of the flow studied by Min and Lueptow@8# when
both the inner and outer radii of their cylindrical configur
tion tend to infinity and only the outer cylinder rotates abo
its axis. This latter case is equivalent to ours except that
consider a pressure gradient along the flow direction wh
these authors do not.

It is worth noting that the present flow is also strong
linked to the one studied by Varapaev and Yagodkin@6#.
Indeed if 2H denotes the height of their channel with inje

.

FIG. 2. Typical mean longitudinal velocity profiles forRinj

585 and different values of the pressure parameterP. Note that the
inviscid solution is valid in almost the whole domain for this inje
tion Reynolds number.
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3002 56F. NICOUD AND J. R. ANGILELLA
tion at both sides~see Fig. 3!, it is easy to show that the
corresponding mean flow is such that

Uch* 5Uax* cosS p

2

Y*

H D with Uax* 5
pVinj,ch*

2H
X* , ~4!

Vch* 5Vinj,ch* sinS p

2

Y*

H D , ~5!

dPch*

dX*
52rS pVinj,ch*

2H D 2

X* . ~6!

In these relationsUch* , Vch* anddPch* /dX* denote the stream
wise velocity, the normal~to the wall! velocity, and the
streamwise pressure gradient, respectively.Uax* is the stream-
wise mean velocity at the center line of the channel (Y*
50). X* is the coordinate along the flow direction~X* 50
at the front end of the channel!. Note that Eqs.~4!–~6! are
good approximations of the mean flow studied by Varap
and Yagodkin@6# as long as the channel injection Reynol
number (Rinj,ch5Vinj,ch* H/n) is large enough to allow the vis
cous terms to be neglected compared to the pressure eff
If this is not the case, the corresponding mean flow may
be derived analytically provided the front-end wall is r
placed by a symmetry plane@12#. However, the correspond
ing velocity profile is not of cosine type anymore~it continu-
ously passes from cosine to parabolic shape asRinj,ch tends to
zero!.

Inside a small domainD defined by2H<Y* <2H1d
and Xo* <X* <Xo* 1dX* with d!H ~see the exaggerate
area of Fig. 3!, the above mean quantities may be appro
mated as

FIG. 3. Comparison of the generalized Couette flow~lower fig-
ure! and the channel with injection at both sides~upper figure!. The
former may be seen as a part of the latter.
v

cts.
ill

-

Uch* 5Uax*
p

2H
y* , ~7!

Vch* 5Vinj,ch* , ~8!

dPch*

dX*
52r

Uch~y* 5d!
* Vinj,ch*

d
. ~9!

In these relations,y* 5Y* 1H andy* 50 at the lower injec-
tion wall. If they are nondimensionalized usingd and
Uch(y* 5d)

* , relations~8! and~9! define a flow that is equiva
lent to the base flow studied in the present paper~U5y, V
5Vinj,ch, and P5Rinj,ch/Ro,ch!. Here Ro,ch is an ‘‘outer’’
Reynolds number defined asRo,ch5Uch(y* 5d)

* d/n. Thus,for
high injection Reynolds numbers Rinj,ch, the generalized
Couette flow corresponds to the near wall zone of Varap
and Yagodkin’s flow, that is to say, the linear part of the
sine and cosine profiles for the normal and the streamw
velocity components. Recall that this is only the case wh
Rinj,ch is large enough~say,Rinj,ch.100!. Note also that the
reference velocityUch(y* 5d)

* used to nondimensionalize rela
tions ~8! and ~9! actually depend on the streamwise coor
nate. As a consequence, the flow inside the domainD can be
seen as a generalized Couette flow only if its length is sm
compared to its positionXo* in the channel (dX* !Xo* ).

III. EIGENVALUE PROBLEM

An important feature to note is that the generalized C
ette flow ~as defined in the preceding section! is nonparallel
since it has a nonzero transverse component. As a co
quence, the classical Orr-Sommerfeld equation for either p
allel or nearly parallel flows@13# is not relevant for the
present study. However, since the mean flow is periodic
the streamwise direction, the classic normal-mode appro
@10# can be used to derive the relevant equation for the p
turbations. The flow is defined with its stream functio
c(x,y), separated into a mean and a fluctuating part

c~x,y!5c̄~x,y!1ĉ~x,y,t !. ~10!

In the context oflinear stability analysis, the perturbation i
supposed to be small so that the quadratic terms of fluct
ing quantities are negligible compared to first-order term
The starting point is the vorticity equation for two
dimensional incompressible flows

Dc t1cy~Dc!x2cx~Dc!y5
1

R
D~Dc!, ~11!

whereR5U refL ref /n is the Reynolds number based on a re
erence velocityU ref , length scaleL ref , and the viscosityn.
~In the present study, we have chosenU ref5Uo and L ref
5h, so thatR equalsRo.! The stream function has thus bee
nondimensionalized withU refL ref . Using the normal-mode
approach we write the perturbations in the form

ĉ~x,y,t !5f~y!exp@ ia~x2ct!#, ~12!
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56 3003EFFECTS OF UNIFORM INJECTION AT THE WALL ON . . .
wherea is real and denotes the spatial wave number of
perturbation;c is the complex phase velocity~c5cr1 ic i ,
i 2521!. This approach is valid for short times only sinc
viscous and transverse effects rapidly change the shap
the perturbation amplitudef.

Substituting Eq.~10! into Eq. ~11!, we obtain

U~f92a2f!2DUf1
i

aRo
~f~4!2a2f9!

2
i

a
@V~f-2a2f8!2DVf8#

5S c1
ia

Ro
D ~f92a2f!. ~13!

This is the well-known Orr-Sommerfeld equation in whic
an additional term due to the transverse mean flow appe
The mean flow is defined as

U~x,y!5cy, V~x,y!52cx. ~14!

As already noted, if the mean flow is fully developed in t
x direction, the mean normal velocity is constant becaus
continuity. If y varies in the (a,b) interval ~a50 andb51
in our study!, we set the boundary conditions

f~a!5f8~a!5f~b!5f8~b!50, ~15!

which correspond to zero fluctuating velocities at the bou
aries. Equation~13! with boundary conditions~15! defines an
eigenvalue problem: We have to find combinations
(a,c,Ro) for which nontrivial solutions exist. We choose
study thetemporal instability of the flow, so that we seta
and Ro first and then solve Eq.~13! to obtain the solutions
@f(y)# and the corresponding complex phase velocity (c).
The expansion rate of the perturbation is thenv5aci . It is
positive if the flow is unstable for the wave numbera and
the Reynolds numberRo and negative if the flow is stable fo
these parameters.

IV. ASYMPTOTIC ANALYSIS

An asymptotic analysis based on the fact that injection
small compared to the streamwise velocity has been
formed. Using Davey’s methodology@11#, we set

f ~y!5f9~y!2a2f~y!, ~16!

so that the stream function that satisfiesf8(1)5f(1)50 is

f~y!5
21

a E
y

1

sinh@a~y2s!# f ~s!ds. ~17!

Equation~13! then reads

f 95l3~y2 c̄! f 1Rinj f 8, ~18!

with l35 iaRo , the argument ofl is p/6, and c̄5c
1 ia/Ro . Solutions of Eq.~18! must satisfy boundary con
ditions at the wall: f8(0)5f(0)50. We substitute these
conditions into expression~17! to obtain
e

of

rs.

of

-

f

s
r-

E
0

1

exp~6ay! f ~y!dy50. ~19!

The only difference between Davey’s problem and ours
theRinj f 8 term in Eq.~18!. We look for solutions of Eq.~18!
of the form f (y)5*Cexp@l(y2c̄)t#g(t)dt. This leads to

f ~y!5E
C

exp@l~y2 c̄!t1at22t3/3#dt, ~20!

where a5Rinj /(2l) and C is the classic complex contou
used for the first Airy function C5$` exp(i2p/3),
` exp(2i2p/3)%. Note that fora50, Eq. ~18! is the Airy
equation and the solution is justf (y)5Ai @l(y2 c̄)#. Writ-
ing Eq. ~19! with expression~20! and assumingl@a, we
obtain

E
C

exp~lt !21

t
exp~bt1at22t3/3!dt50. ~21!

where b52l c̄. Following Davey, we assumeulu@1 and
write this equation to leading order in the form

F~a,b!5E
C

1

t
exp~bt1at22t3/3!dt50. ~22!

We shall discuss the reliability of this approximation later
examining thel dependence of the obtained dispersion re
tions. The stability of the flow depends asymptotically
two complex parameters (a,b), i.e., on three real paramete
Rinj /(aRo)1/3, cr , andci . For a50 the boundary condition
~22! is justA1(b,1)50 ~A1 denotes the first generalized Air
function!, which shows thatb is constant, and leads to Dav
ey’s dispersion relations. For nonzero injections the roots
theF(a,b) function are not known, but asF is continuously
differentiable with respect tob, the implicit function theo-
rem leads to

b5F̃~a!, ~23!

whereF̃ is a continuously differentiable function defined
an open neighborhood ofa, which we denoteU. The third
asymptotic hypothesis we use is thatRinj!(aRo)1/3 ~i.e.,a is
close to 0!, in such a way that 0PU. As U is not empty~F̃ is
not singular!, this hypothesis is verified ifa is small enough.
The F̃ function can thus be approximated by its first-ord
Taylor series

F̃~a!.F̃~0!1aF̃8~0!. ~24!

We then obtainb.k11k2a, wherek1 and k2 are complex
constants. This leads to the dispersion relations

ci.2
a

Ro

1
A0

~aRo!1/31A1

Rinj

~aRo!2/3, ~25!

cr.
A08

~aRo!1/31A18
Rinj

~aRo!2/3, ~26!

a!~aRo!1/3, ~27!
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3004 56F. NICOUD AND J. R. ANGILELLA
1!~aRo!1/3, ~28!

Rinj!~aRo!1/3. ~29!

HereA0 , A1 , A08 , andA18 denote real constants. To estima
these constants, we made use of the numerical solver
scribed in Sec. V. We findA0.21.1, in agreement with
Davey’s numerical fitting. Moreover, a positive value
found for A1 (A1.0.5), showing that the injection term ha
a destabilizing effect, at least for smallRinj .

In order to test the reliability of the model we have exa
ined the fitted constantsA0 andA1 , which are not expected
to vary with l. Figure 4 showsA0 and A1 versus ulu for
uluP@10,46#, obtained withRoP@104,105#, a50.1, anda
51. For l,20, the variation rate ofA1 is no longer negli-
gible because the asymptotic hypothesis that simplifies
~21! to Eq.~22! is no longer valid. Taking averaged values
A0 andA1 for uluP@30,45# ~i.e., aRoP@27 000,90 000#!, a
numerical dispersion relation forci is directly obtained from
Eq. ~25!,

ci.2
a

Ro

2
1.1482

~aRo!1/310.5365
Rinj

~aRo!2/3, ~30!

a!~aRo!1/3, ~31!

aRo>27 000, ~32!

Rinj!~aRo!1/3. ~33!

The third asymptotic assumption concerns the inject
Reynolds numberRinj!(aRo)1/3. To estimate the values o
Rinj for which this hypothesis is valid we have plottedci
versusRinj and compared numerical and analytical resu
~30!. Figure 5 suggests that the model remains reliable
Rinj;30 and less, even if the asymptotic hypothesisRinj
!(aRo)1/3 is no longer valid, strictly speaking.

Higher-order asymptotic models are easily provided
the relationb5F̃(a). Indeed, sinceF̃ is regular, Taylor’s

FIG. 4. Fitted constants versusulu5(aRo)1/3. Note that the
mean values used in the asymptotic model~see the text! are no
longer valid forulu,25: for ulu510, the constantA1 is only 0.37.
e-

-

q.

n

s
r

y

formula may be applied at higher order. For example, us
a second-order approximation forF̃,

F̃~a!.F̃~0!1aF̃8~0!1
1

2!
a2F̃9~0!,

a quadratic dispersion relation is obtained:

ci.2
a

Ro

2
1.1482

~aRo!1/310.5365
Rinj

~aRo!2/320.0320
Rinj

2

aRo

,

~34!

a!~aRo!1/3, ~35!

1!~aRo!1/3, ~36!

Rinj!~aRo!1/3. ~37!

As shown in Fig. 5, the analyticalci steming from the latter
model remains much closer to the numerical one. Anyw
as noticed for the first-order asymptotic formula, variation
A1 with ulu discards those results if we move to anotherulu,
especially ifulu,25.

The main advantage of this asymptotic analysis is to sh
that, for small injection rates, the phase velocity of the m
unstable mode is a linear function of the injection Reyno
number. However, this approach needed to be coupled w
numerical one in order to show that injection has a desta
lizing effect. Moreover, the obtained dispersion relations
valid only in an open neighborhood ofa50 because the

FIG. 5. Comparison between numerical results and the ana
cal dispersion relations corresponding to the linear and the q
dratic models, foraRo530 000 and 75 000. The asymptotic a
sumption Rinj!(aRo)1/3 prevents the linear model from bein
reliable forRinj.30.
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56 3005EFFECTS OF UNIFORM INJECTION AT THE WALL ON . . .
implicit function theorem has been used. Consequently,
worth continuing this study using the numerical tool alrea
used to fit the constantsA0 andA1 . This tool is described in
the next section.

V. NUMERICAL METHOD

In an attempt to investigate further the stability analysis
the so-called generalized Couette flow, a numerical so
for the Orr-Sommerfeld equation has been developed. In
der to use the same solver for any mean flow, a fin
difference method has been chosen. It is slower than m
ods based on expansion in orthogonal functions@14#, but can
be easily applied to two-dimensional flows and does not
pend on the mean profile we use. We suppose the flow
fully developed in thex direction, so that Eq.~13! only con-
tains functions of they variable. This implies that they
component of the mean flow is uniform. They axis is dis-
cretized withN grid points:

yi5a1~ i 21!
b2a

N21
, i 51, . . . ,N. ~38!

The amplitude of the fluctuating stream function is samp
@f i5f(yi)# and its derivativesf (n)5(f1

(n) , . . . ,fN
(n))T are

given by a compact scheme@15#

Anf~n!5Bnf. ~39!

An is the N3N tridiagonal matrix of the compact schem
andBn is anN3N banded matrix whose bandwidth depen
on the stencil of the finite-difference method we choose~see
Ref. @15#!.

Equation~13! discretized with this method leads to

Af5lBf, ~40!

with

A5Diag~U !~A2
21B22a2I !2Diag~U9!

1
i

aRo
~A4

21B42a2A2
21B2!2

i

a
Diag~V!

3~A3
21B32a2A1

21B1!, ~41!

B5A2
21B22a2I , ~42!

l5c1
ia

Ro
, ~43!

where Diag(f ) is a diagonal matrix defined as

@Diag~ f !# i , j5d i , j f ~yi !, i 51, . . . ,N.

Boundary conditions are imposed in an explicit manner,
ing a fourth-order finite-difference formula forf8. On the
lower boundary (a) we have

f~a!50⇒f150,

f8~a!50⇒g~f2 ,f3 ,f4 ,f5!50, ~44!

while for the upper boundary (b)
is
y

f
er
r-
-
h-

-
is

d

-

f~b!50⇒fN50,

f8~b!50⇒g~fN21 ,fN22 ,fN23 ,fN24!50. ~45!

Equations ~44! and ~45! provide a way to calculate
(f1 ,f2 ,fN21 ,fN), so that we restrict the dimension of th
eigenvalues problem~40!

f5~f3 , . . . ,fN22!T.

ThenA andB denote (N24)3(N24) banded nonsymmet
ric matrices where the first~and last! two lines have been
removed and lines near the boundaries have been mod
according to Eqs.~44! and~45!. Equation~40! defines a gen-
eralized eigenvalue problem, which we have solved with
LAPACK library.

The numerical procedure has been tested extensively
fundamental parallel flows~mixing layer, Couette flow, and
Poiseuille flow! and quasiparallel flows~symmetric or asym-
metric jets and channel flow with injection!. The results ob-
tained for the configuration studied in this paper~see Sec. II!
are presented in the next section.

VI. NUMERICAL RESULTS

The numerical procedure described above has been
to study the influence of injection on the stability of th
generalized Couette flow. In most computations, Eq.~13! has
been discretized using 100 points in they direction.

A. Eigenmodes

The influence of injection on the eigenmodes has b
investigated. Its effect is clearly visible as mode locatio
drastically change in the (cr ,ci) plane ~this graph is often
called thespectrumof the corresponding matrix by linea
algebra specialists; this name, which may also be found
@13#, will be used below!. Typical mode distributions are
plotted in Fig. 6. In this figure, filled and open symbols,
well as dots, denote eigenvalues. The injection Reyno
number lies in the range 0–200, and (Ro ,a) is fixed ~these
values have been chosen according to an analysis of this
performed in the turbulent case by Nicoudet al. @16#!: Ro
53000 anda51. The filled circles denote the modes fo
zero injection Reynolds numbers, whereas the open sym
correspond to non-zero injection rates@Rinj550 ~circles!,
Rinj5100 ~squares!, Rinj5150 ~diamonds!, and Rinj5200
~triangles!, respectively#. The path of a given mode, whe
injection increases, is given by dots in the (cr ,ci) plane. For
each path, the difference inRinj between two consecutive
dots is 1. Only the upper part (ci.20.5) of the spectra is
shown in Fig. 6 because it contains the most interest
modes~the modes likely to become unstable!. For zero in-
jection ~filled circles!, well-known results for parallel Cou
ette flow without pressure gradient and injection are fou
Since this flow is stable, all the modes are situated in the
plane corresponding toci,0. Note also that real parts (cr)
of the modes lie in the interval (Umin ,Umax)5(0,1), in agree-
ment with Joseph’s theorem@17#. Finally, the mode reparti-
tion is symmetric with respect to the linecr5(Umax
1Umin)/25 1

2 . It has been checked that the eigenvectorsf1
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andf2 associated with two symmetric eigenmodesc1 and
c2 ~ci

15ci
2 , cr

1512cr
2! are such thatf1(y)5f2(1

2y).
When injection occurs, the modes are spread out ac

the spectrum, which is no longer symmetric. This is in
itively understable since, due to transverse convection,
base flow is not symmetric with respect to the liney50.5.
We can also note from Fig. 6 that the real part of the ph
velocity may lie outside the rangeUmin–Umax for Rinj of
order 50 or greater@see modes (b), (d), and (e), for ex-
ample#. This in not in disagreement with Joseph’s theore
@17# since it has been derived for parallel flows only. T
evolution of a given mode may be highly irregular wh
injection increases. For example, mode (e) follows a path
whose direction changes rapidly three times betweenRinj
50 andRinj.30. Moreover, the distance between two co
secutive dots~on a given path! may vary in a large exten
@see mode (c) in Fig. 6#. This means that the phase veloci
of the corresponding mode is not a linear function of t
injection Reynolds number. However, for lowRinj , the evo-
lution of the phase velocity of each mode is regular in
(cr ,ci) plane. This result is in agreement with the line
~with respect toRinj! dispersion relations~25!–~29!, resulting
from the asymptotic model derived in Sec. IV. Mode (a),
which was one of the two most unstable modes of the fl
without injection, becomes unstable immediately afterRinj
550. WhenRinj increases further, the amplification rate
this mode increases too, up toaci.0.02 forRinj.100. Then
injection begins to stabilize this mode and finally the ba
flow becomes stable again forRinj.170. Recall that this fea
ture ~destabilization for low injection, stabilization for hig
injection rates! has already been observed by Varapaev
Yagodkin @6# and Min and Lueptow@8# for other mean
flows. This result will be obtained for othera andRo in Sec.
VI C. Finally, note that mode (b) @the symmetric mode o

FIG. 6. Less stable eigenmodes forRo53000, a51, and ci

.0.5, with 0,Rinj,200. The change inRinj between two consecu
tive dots is 1. For no injection, the spectrum is symmetric andcr

lies in the rangeUmin–Umax, in agreement with Joseph’s theorem
Injection makes modes spread out in the complex plane. WhenRinj

increases from 0, mode (a) becomes unstable and then stabiliz
for Rinj.170.
ss
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(a) for the classic Couette flow# is never destabilized by
injection. Its amplification rate decreases even for small v
ues of Rinj , while that of mode (a) begins to grow. The
following subsection is devoted to the comparison of t
eigenvectors corresponding to paths (a) and (b).

B. Eigenvectors

Figures 7 and 8 show the mean-kinetic-energy pro
q(y) for the perturbations corresponding to modes (a) and
(b) respectively. This quantity has been calculated by av
aging the kinetic energy of the perturbations over a perio

q5
1

2

a

2p E
0

2p/a

~u21v2!dx. ~46!

FIG. 7. Mean-kinetic-energy profiles for mode (a). Circles de-
note unstable modes. For eachRinj , q has been scaled by its max
mal value. Note that the secondary peak approaches the upper
when injection increases.

FIG. 8. Mean-kinetic-energy profiles for mode (b). For each
Rinj , q has been scaled by its maximal value. Note that the s
towards the upper boundary is limited due to the no-slip condit
imposed aty51. The exaggerated area shows that a discretiza
using 100 points is sufficient to compute the corresponding eig
vector.
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In definition ~46!, u andv are the real parts of the velocit
fluctuations in thex andy directions, respectively,

u5Re@f8~y!eiax#, ~47!

v5Re@2 iaf~y!eiax#. ~48!

q(y) is thus calculated from

q5
1

4
~ uf8u21a2ufu2!. ~49!

In each graph, the wave numbera and the outer Reynold
numberRo are fixed~Ro53000 anda51!, while the injec-
tion Reynolds number varies from 0 to 80; for eachRinj , q
has been scaled by its maximal value. In Fig. 7, we h
marked with a circle the profiles that have apositiveexpan-
sion rate~i.e., which areunstable!.

Mode (a) is such that most of the energy is contained
the lower half of the domain (0,y, 1

2 ) when no injection
occurs ~see Fig. 7!. The q profile is characterized by two
peaks~the first one located atya1.0.15, the second one a
ya2.0.4!. Due to injection, the secondary maximum ofq
develops. It is shifted towards the upper boundary mu
faster than the primary peak:ya2 passes from 0.4 to 0.9
when Rinj increases from 0 to 80; at the same time,ya1
roughly passes from 0.15 to 0.20. Moreover, the value of
secondary peak is a quarter of the value of the primary p
for Rinj50; this ratio is greater than 0.8 forRinj580.

Most of the kinetic energy of mode (b) is contained be-
tween y5 1

2 and 1. Because eigenvectors (a) and (b) are
symmetric abouty5 1

2 whenRinj50, the positions of the two
main energy peaks of mode (b) are yb1.0.85 and y2b
.0.6 ~see Fig. 8!. When injection occurs, the primary pea
is shifted towards the upper wall, but cannot reach this
cause of the no-slip condition aty51. The secondary peak i
shifted too, but cannot develop@as it does in the (a) mode
case# because of the existence of the primary peak. Its p
tion does not change to a large extent and its contributio
the total kinetic energy of the mode decreases. The exag
ated part of this figure shows that the corresponding eig
vector is well resolved if 100 points are used to discret
Eq. ~13!. Indeed, no change is observed in the shape of
primary peak~expected to be the most difficult part to asse
numerically! for this mode if 200 or 400 points are use
instead.

For Rinj.100, mode (a) is such that the amount of energ
contained in the range12 ,y,1 is equivalent to that con
tained in the range1

2 ,y,1. The value of the right peak
~referred to above as the secondary peak! is now greater than
that of the primary peak. It may be noted in Fig. 9 that mo
(a) now follows a similar evolution to that of mode (b) for
lower injection rates. The right peak cannot be displaced
to the no-slip condition prescribed aty51. Moreover, the
left peak is weakly displaced and decreases as injection
creases. This mode becomes more and more stable w
injection increases, as dose mode (b). Finally, mode (a)
becomes stable again forRinj.170.

From the above description of the evolution ofq, it seems
that the stabilization that occurs for large injection rates
strongly linked to the no-slip condition imposed at the upp
e
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wall. It would seem that the transverse flow was overwhe
ing the hydrodynamic instability. The same scenario is p
posed in@8# to explain the restabilization that occurs whe
the outward flow increases. Other computations with diff
ent types of upper wall boundary conditions will be nece
sary to conclude this point.

C. Marginal stability of the generalized Couette flow

The previous description of mode evolution in the (cr ,ci)
plane suggests that it is possible to reach linear instab
provided the injection Reynolds number is sufficiently larg
This is confirmed for a wide range of outer Reynolds nu
bers and wave numbers in Fig. 10, which shows the maxi
expansion rate of a linear perturbation (g5max$aci ,a
P@0,1#%) versusRinj for variousRo . ~For all the computed

FIG. 9. Mean-kinetic-energy profiles for mode (a). Circles de-
note unstable modes. For eachRinj , q has been scaled by its max
mal value. The right peak cannot evolve because of the no-
condition imposed aty51 and the left peak decreases asRinj in-
creases.

FIG. 10. Maximal expansion rate versus injection Reyno
number. The step inRo is 104. This figure suggests that the value
Rinj for which the flow becomes unstable does not depend on
streamwise Reynolds numberRo .
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values of Ro and Rinj we have checked that max$aci ,a
P@0,1#%5max$aci ,aP@0,̀ #%.! Positive g means that there
exist aP@0,̀ # for which the flow is unstable. As expecte
for Rinj50 the linear perturbation is damped for alla and
Ro , in agreement with classical results on the stability of
Couette flow without injection and pressure gradient. W
increasingRinj , g increases and becomes positive, so that
flow is linearly unstable. Moreover, a critical value ofRinj
seems to exist, before which the flow remains linearly sta
for all Ro . For higherRinj , the flow becomes unstable: Wav
numbers exist for which the perturbation grows, providedRo
is large enough. Figure 10 suggests that the value ofRinj for
which the flow becomes unstabledoes not depend on Ro ~at
least for 104,Rinj,105!. The existence of a critical injection
Reynolds numberRinj,crit that does not depend on the strea
wise Reynolds numberRo leads to the fact that the nond
mensionalized injection velocity for which the flow becom
unstable (Vinj,crit) is an inverse function of the streamwis
Reynolds number

Vinj,crit5
Vinj,crit*

Uo
5

C

Ro
~50!

with C positive constant. Figure 11 shows the margin
curve obtained by the numerical Orr-Sommerfeld sol
plotted in the (Vinj,crit,1/Ro) plane and suggestsC.48, at
least for 1/Ro,0.0003. Then, sinceVinj,crit* /Uo5Rinj,crit /Ro ,
we obtain

Rinj,crit5C.48. ~51!

This value also corresponds to the intersection point of
curves g versus Rinj , which are plotted in Fig. 10. Fo
1/Ro.0.0003, the slope of the curve plotted in Fig. 11 b
comes greater and greater. In this range of streamwise R
nolds number, a cubic fitting provides a better approximat
of Vinj,crit as a function of 1/Ro ~see Fig. 11!. This means that

FIG. 11. Nondimensional critical injection velocity versu
streamwise Reynolds number. For large streamwise Reynolds n
bersRo , the nondimensional critical injection velocity is a line
function of 1/Ro . This implies that the critical injection Reynold
numberRinj,crit is constant~see the text!.
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for small values ofRo , the critical injection Reynolds num
ber tends to increase. Consequently, 48 may be seen
critical value forRinj , under which the generalized Couet
flow is always stable.

The existence of a critical injection Reynolds number m
be interpreted by recalling that one can view the wa
injected flow as a mean flow with two components (U,V)
and linearly perturb it to find its stability characteristics. Th
is the methodology used in this paper. Another appro
would consist of viewing the Couette flow with injection an
pressure gradient as a parallel Couette flow submitted
perturbation~the injection and the associated pressure gra
ent!. Since this latter flow is known to be stable for sma
disturbances, infinitesimal injection is expected to let t
flow stable: Only injections with a sufficient momentum flu
may lead to instability. As both approaches must be equ
lent, we conclude that the critical streamwise Reynolds nu
ber ~in the sense of the first approach! should remain infinite
for all injection Reynolds number lower than a certain valu
This is the main result of our numerical linear stability ana
sis: We find an injection Reynolds number of order 48, un
which no instability occurs whatever the streamwise R
nolds number.

The critical streamwise Reynolds number has also b
computed and is plotted versusRinj in Fig. 12. This curve
suggests that (Ro)crit remains infinite as long asRinj,48, in
agreement with Fig. 11. ForRinj.48, the critical streamwise
Reynolds number drastically decreases to finite values.
minimum value is around 1450 and is achieved for an inj
tion Reynolds number of order 80. For largerRinj the mar-
ginal streamwise Reynolds number increases. The same
havior has been found by Varapaev and Yagodkin@6# for
their channel with injection at both sides.

m-
FIG. 12. Critical streamwise Reynolds number versus inject

Reynolds number. As long as the injection Reynolds numbe
lower than its critical value 48, the Couette flow with injection a
pressure gradient remains stable. Then injection destabilizes
base flow, which becomes conditionally unstable forRinj.48. For
values of Rinj greater than 80, the critical streamwise Reyno
number increases again.
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VII. CONCLUSION

The stability of plane Couette flow submitted to wall i
jection through the lower wall and suction through the up
one has been examined numerically and asymptotically.
dispersion relations proposed by Davey@11# are generalized
for small injection rates. These asymptotic relations sho
linear dependence of the phase velocity with the inject
Reynolds number. This behavior has been confirmed usi
finite-difference numerical solver for the extended O
Sommerfeld equation. Moreover, the different constants
the asymptotic model have been obtained by fitting sev
numerical results. Injection is then found to have a desta
lizing effect, as it linearly increases~for small injection Rey-
nolds numbers! the expansion rate of small sinusoidal pe
turbations.

High injection rates are found by numerical computatio
to stabilize the flow, as the critical streamwise Reyno
number~which decreases for small injections! increases for
Rinj.80. Such a behavior has also been observed for cha
flows @6# as well as for the Taylor-Couette flow@8#. The
comparison of kinetic-energy profiles for different mod
and different injection Reynolds numbers shows that the
bilization of the flow for high injection rates could be linke
to an overwhelming effect due to the existence of the up
wall.
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Due to injection, the eigenvalues are spread out in
(cr ,ci) plane and the spectrum is no longer symmetric.
the same plane, and for increasing injection Reynolds nu
bers, the examination of certain paths shows the existenc
nonlinear dependences between the phase velocities o
corresponding modes andRinj . However, this does not seem
to occur for low injection rates, in agreement with th
asymptotic dispersion relations.

Finally, a critical injection Reynolds number exists belo
which no instability occurs. Our numerical solver sugge
Rinj,critic.48 for Ro.3300. This behavior may be simply de
scribed in the statement that classic parallel Couette flow
linearly stable flow, so that a finite-momentum injected fl
is required to destabilize it. A nonlinear analysis of pla
Couette flow perturbed by a uniform finite injection wou
be useful to understand the behavior of the flow near
critical injection Reynolds number.
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